

Modeling Formation of Microstructure

Alex Umantsev, Northern Arizona University, DMR-0080176

Research in Undergraduate Institutions

Problem: During material's processing interfaces move and create thermal effects.

Findings: 1. A unified theory of thermal effects which is applicable to completely different transformations was developed.

- 2. New thermodynamic force acting on an interface was revealed.
- 3. A number of new effects were theoretically predicted.

Outreach Activities:

- 1. 10thInternational Conference on Intergranular & Interphase Boundaries, Haifa, Israel, July 22-26, 2001.
- 2. 14th US National Congress of Theoretical & Applied Mechanics, Blacksburg, VA, June 23-28, 2002.

10th International Conference Interfacial velocity=Driving force+New force

classical theory

The New force may propel or hamper motion of the interface depending on the type of interface.

Modeling Formation of Microstructure

Alex Umantsev, Northern Arizona University, DMR-0080176

Research in Undergraduate Institutions

Most Important Results:

- 1. Heterophase interfaces: surface creation/destruction and heat trapping effects.
- 2. Homophase interfaces: temperature waves and thermal drag effects.

Journal Publications:

- 1."Thermal effects in dynamics of interfaces" J. Chem Phys. 116 (2002), 4252.
- 2. "Thermal effects of interfacial dynamics" Interface Science, 9 (2001), 349.
- 3."Physical analogy between continuum thermodynamics and classical mechanics" Continuum mechanics and thermodynamics, Submitted.

Heat trapping yields metastable **Applications**: materials which may be used as sensors of heat--smart materials. Thermal waves may be visualized and used as indicators of transformations for nondestructive testing.